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Implications

Implications of Energy Generation

• Involves a local (volumetric) source of thermal energy due to conversion

from another form of energy in a conducting medium.

• The source may be uniformly distributed, as in the conversion from

electrical to thermal energy (Ohmic heating):
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or it may be non-uniformly distributed, as in the absorption of radiation

passing through a semi-transparent medium.  

  xq e 

• Generation affects the temperature distribution in the medium and causes

the heat rate to vary with location, thereby precluding inclusion of 

the medium in a thermal circuit.

For a plane wall,



The Plane Wall

The Plane Wall

• Consider one-dimensional, steady-state conduction

in a plane wall of constant k, uniform generation,

and asymmetric surface conditions:

• Heat Equation:
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Is the heat flux     independent of x? q

• General Solution:
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What is the form of the temperature distribution for 

0?q   > 0?q  < 0?q

How does the temperature distribution change with increasing    ? q

(3.45)



Plane Wall (cont.)

Symmetric Surface Conditions or One Surface Insulated:

• What is the temperature gradient

at the centerline or the insulated

surface?

• Why does the magnitude of the temperature

gradient increase with increasing x?

• Temperature Distribution:

 
2 2

2
1

2
s

q L x
T x T

k L

 
   

 
(3.47)

Overall energy balance on the wall →
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• How do we determine the heat rate at x = L?

• How do we determine    ? sT



Radial Systems

Radial Systems

• Heat Equations:

Cylindrical
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Radial Systems (cont.)

Temperature Distribution
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Surface Temperature

Overall energy balance:

Or from a surface energy balance:
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• Solution for Uniform Generation in a Solid Sphere of Constant k

with Convection Cooling:

• A summary of temperature distributions is provided in Appendix C

for plane, cylindrical and spherical walls, as well as for solid 

cylinders and spheres.  Note how boundary conditions are specified

and how they are used to obtain surface temperatures.
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Problem: Nuclear Fuel Rod 

Problem 3.82      Thermal conditions in a gas-cooled nuclear reactor

with a tubular thorium fuel rod and a concentric 

graphite sheath:  (a) Assessment of thermal integrity

for a generation rate of                   . (b) Evaluation of

temperature distributions in the thorium and graphite

for generation rates in the range                      

8 310 W/mq 

8 8 310 5 10   W/m .q  

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant 

properties, (4) Negligible contact resistance, (5) Negligible radiation.

PROPERTIES: Table A.1, Thorium: 2023 K; Table A.2, Graphite: 2273 K.mp mpT T 

SCHEMATIC:



ANALYSYS: (a) The outer surface temperature of the fuel, T2 , may be determined from the rate 

equation
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The heat rate may be determined by applying an energy balance to a control surface about the fuel 

element,

Since the interior surface of the thorium is essentially adiabatic, it follows that

 2 2

2 1
17,907 W/mq q r r   

•

Hence,

 2 tot 17,907 W/m 0.0185 m K/W 600 K 931 KT q R T      

With zero heat flux at the inner surface of the fuel element, Eq. C.14 yields
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Problem: Nuclear Fuel Rod (cont.) 
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Since  T1 and T2 are well below the melting points of thorium and graphite, the prescribed

operating condition is acceptable.

(b) The solution for the temperature distribution in a cylindrical wall with generation is
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Boundary conditions at r1 and r2 are used to determine  T1 and  T2.
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Problem: Nuclear Fuel Rod  (cont.)



The following results are obtained for temperature distributions in the thorium.

Operation at                             is clearly unacceptable since the melting point of

thorium would be exceeded.  To prevent softening of the material, which would occur

below the melting point, the reactor should not be operated much above                          .                   

The small radial temperature gradients are attributable to the large value of      .
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Problem: Nuclear Fuel Rod  (cont.)
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the temperature distribution in the graphite is 
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Using the value of  T2 from the foregoing solution and computing T3 from the surface condition,
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Problem: Nuclear Fuel Rod  (cont.)
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(ii)  Referring

to the schematic, where might radiation effects be significant?  What would be the influence of such 

effect on temperatures in the fuel element and the maximum allowable value of    ?q

COMMENTS: (i) What effect would a contact resistance at the thorium/graphite interface have on 

temperatures in the fuel element and on the maximum allowable value of     ?  q

Operation at                                is problematic for the graphite.  Larger temperature gradients

are due to the small value of       . 
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Problem: Nuclear Fuel Rod (cont.)


